amT-Calculus: An Extension of the m-Calculus to handle Constraints *

Frank D. VALENCIA POSSO f Juan Francisco DIAZ FRIAS * Camilo RUEDA §

12th June 1997

Abstract

The 7-calculus is a formal model of concurrent computation based on the notion of naming. It has
an important role to plav in the search for more abstract theories of concurrent and communicating
systems. In this paper we extend the m-calculus with constraints by adding the notion of constraint agent
to the standard w-calculus concept of agent. We call this extension the 7T -calculus. This paper also
includes examples and uses of the extended calculus showing the transparent interaction of constraints
and communicating processes.

Keywords: Concurrent Programming, Constraint Programming, r-calculus, 7' -calculus, Formal
Calculi, Mobile Processes.

1 Introduction

Research on multiparadigm languages has known increasing interest in the last years. The need to establish a
firm base for the integration of what appears to be fundamentally different notions of programming has led to
the design of formal calculi for a variety of paradigms. One approach in this direction is to devise a calculus
for a particular paradigm and then show how to simulate the others in the calculus. The p-calculus [NM95],
for example, is a formal base for concurrent constraint programming subsuming the A-calculus and powerful
enough to simulate objects (but not classes) and inheritance.

A more direct approach is to include the notions of the integrated paradigms in the calculus, as in TyCO
[Vas94]. a calculus of typed concurrent objects. We favor this latter approach in our search for a calculus
integrating Object-Oriented and Constraint Programming. Our strategy is to rely on minimal orthogonal
extensions to calculi that have already found an established place in the programming language community.
We have chosen as our point of departure the m-calculus [MPW92, Mil91], a well known elegant and simple
model of concurrent computation which also subsumes the A-calculus, because we believe that concurrency is
fundamental to both Object-Oriented and Constraint Programming. In a sense, TyCO can be seen as following
this direction, in that it modifies the m-calculus by including the notion of objects instead of channels and
performing communication via messages passing.

To our knowledge there has been no attempt to encode first-order constraints into the m-calculus or to
orthogonally extend the m-calculus to include them, much less to integrate in it both objects and constraints.
An extension called k-calculus [Smo94b], only considers equational constraints, whereas [VP96] shows that
equational constraints can be encoded into the m-calculus.

*This work is supported in part by grant 1251-14-041-95 from Colciencias-BID.

t Associate Professor, Faculty of Engineering, Pontificia Universidad Javeriana Cali, Colombia. Member of AVISPA
team. E-mail: fvalenci@atlas.ujavcali.edu.co.

! Associate Professor, Computer Science Department, Faculty of Engineering, Universidad del Valle, Colombia. Member
of AVISPA team and GEDI team. E-mail: jdiaz@borabora.univalle.edu.co.

§ Associate Professor, Faculty of Engineering, Pontificia Universidad Javeriana Cali, Colombia. Chief of AVISPA team
and member of GEDI team. E-mail: crueda@atlas.ujavcali.edu.co.

749

In this paper we present the 7T -calculus, an orthogonal extension of the (polyadic) m-calculus with constraints,
where the notion of consiraint agent is added to the standard m-calculus concept of agent.

In sections 2, 3, and 4 we present the syntax, semantics and uses of the 7-calculus, respectively. The syntax
of the mt-calculus adds constraint agents to the standard m-calculus agents. Constraint agents performs the
well known Ask and Tell operations of CCP languages. The semantics is defined operationally following the
transition system for the cc-model used in [Sar93], this in contrast with the denotational semantics of the -
calculus. We illustrate some of the more interesting uses of nt-calculus: the definition of recursive processes
and the notion of cell, which can be used to provide a notion of state compatible with concurrency and
constraints. We also illustrate examples to show the transparent interaction of constraints and communicating
processes.

Finally, section 5 shows conclusions and future work.

2 Syntax

The syntax of the n*-Calculus is given in Table 1. There are only two kinds of entities in the m+-calculus:
Channels and Agents (or Processes). The nt-calculus adds Constraint agents and agents declaring variables
to the standard m-calculus agents. In the m-calculus, names denote channels. The mt-calculus also allows
variables and primitive values to be channels.

Normal Processes: M, N = P Agent under prefix
| M + N Summation
| O Inaction or null
process
Constraint agents: R = 1P Tell agent
| ?7¢.P Ask agent
Agents (or processes) P, Q) = (va)P New name ¢ in P
| (vz)P New variable z in P
| P|Q Composition
| N Normal process
| =P Replicated agent
| R Constraint agent
Channels C = a Name
| v Value
| = Variable

Prefixes: = n= C7?z1...2,] Reading prefix
| CYCy...C,] Writing prefix

Table 1: 7t-calculus syntax

In what follows, we describe the agents informally. In an agent m.P the prefix 7 represents an atomic action,
the first action performed by m.P and P represents the continuation of 7.P. When n is a writing prefix
CYCy ... Cy), m.P means “send C1,. ..,y along channel C' and then activate P”. When = is a reading prefix
C?lxy ... ®y), m.P means “receive the arguments, say z1,...,z,, along channel ¢, use them in P and then
activate P”. In both cases C' is called the subject of .

750

The summation form M + N represents a process able to take part in one -but only one - of two alternatives
for communication. The choice of one alternative precludes the other. The null process 0 is the process doing
nothing.

Constraint agents are new kind of agents whose behavior depends on a global store. A store contains inform-
ation given by constraints. The Tell agent !¢.P means “Add ¢ to the store and then activate P.” The Ask
agent 7¢.P means “Activate P if constraint ¢ is a logical consequence of the information in the store”

The agent (va)P restricts the use of the name a to P. Another way to describe this is that (1'(1)P declares a
new unique name a, distinct from all external names, for use in P. Similarly, (va2)P (new agent) declares a
new variable z, distinct from all external variables in P.

The agent P | @ means that P and @ are concurrently active, so they can act independently (and possibly
communicate). P “Bang P” means P | P ... as many copies as you wish). The operator x is called
replication. A common instance of replication is #7w.P; a resource which can only be replicated when a
requester communicates via .

Usually, agents of the form 7.0 are written 7. We also omit the .O in the constraint agents 0.0 and 70.0

In the next section, we describe formally the behavior of agents.

3 Operational Semantics

3.1 Constraint System

The 7t-calculus is parametrized in a Constraint System. A Constraint System consists of [Smo94b, Smo94a]:

o A signature ¥ (a set of functions, constants and predicate symbols with equality) including a distin-
guished infinite set, A/, of constants called names denoted as a, b, ..., u. Other constants, called values,
are written vy, vs,....

o A consistent theory A (a set of sentences over ¥ having a model) satisfying two conditions:

1. A | =(a = b) for every two distinct names a, b.

2. A ¢ © ¢ for every two sentences ¢, U over ¥ such that v can be obtained from ¢ by permutation
of names.

Often A will be given as the set of all sentences valid in a certain structure (e.g. the structure of finite trees,
integers. or rational numbers). Given a constraint system, symbols 0.1, ... denote first-order formulae in =,
henceforth called constraints. We say that ¢ entails ¢ in A, written ¢ E=a ¥, iff ¢ — 9 is true in all models of
AL We say that ¢ is equivalent to ¢ in A, written ¢ H, iff ¢ =4 ¥ and ¥ =4 ¢. We say that ¢ 1s satisfiable
i Aiff o =L . We use L for the constraint that is always false and T for the constraint that is always true.

As usual, we will use infinitely many z,y,... € V to denote logical variables, designating some fixed but
unknown element in the domain under consideration. The sets fv(¢) C V and bv(¢) C V denote the sets of
free an bound variables in ¢, respectively. Finally, fn(¢) C N is the set of names appearing in o.

As we said before, constraint agents act relative to a store. A store is defined in terms of the underlined

constraint system:

Definition 3.1 (Store) A store S = ¢1 Ada A ... A, (withr > 0) is a constraint in . When r=0,5 is
said to be the empty store (i.e., S =T). When S |Eal, S is said to be the unsatisfiable store. L

The operational semantics of the m+-calculus will be defined in terms of a equivalence relation, =g+, on

-
configurations describing computation, states and a one-step reduction relation, — describing transitions on
these configurations. A configuration is a tuple (P; S) consisting of an agent P and a store S.

3.2 Structural Congruence and equivalence on configurations

We identify first the binding operators in the 7T -calculus: The binding operator for names is (va)P which
declares a new name a in P. There are two binding operators for variables: (vz)P which binds # in P and
C?zy ... x,]. P which declares formal parameters z1,...,z, in P. So we can define free names fn(P), bound
names bn(P), free variables fv(P), bound variables bn(P) of a process P in the usual way. In a similar way
as [Mil91] we define structural congruence for the 7" -calculus.

Definition 3.2 (Structural Congruence) Let structural congruence, =, be the smallest congruence rela-
tion over agents which satisfies the following axioms:

o Agents are identical if they only differ by a change of bound variables or bound names.

o (NP/ =,+,0) and (A/ =,|,0) are symmetric monoids, where NP and A are the set of normal
processes and agents respectively.

@*PEP’ * P.

®

(ba)0 = O, (vz)0 = O, (va)(uvb)P = (vb)(va)P, (vz)(vy)P = (vy)(ve)P, (va)(ve)P = (vz)(va)P.
o Ifa ¢ fn(P) then (va)(P | Q) = P | (va)@Q.

o If 2 & fn(P) then (va)(P | Q) = P | (va)Q.

o If¢ B and P = Q then 1¢.P =1%.Q and ¢ P ="9.Q

Definition 3.3 (nt-equivalence relation on configurations) We will say that < P1; 5y > is ©T -equivalent

to < Py; Sy >, written < Pp;S1 >=p40< Po; 50 >, if PL = Py, 51 HS2, fn(S1) = fn(S2) and fv(S1) =
fu(Ss). =p+ is said to be the wT -equivalence relation on configurations.

The behavior of an agent P is defined by transitions from an initial configuration (P;T). A transition,
+
(P;S) I (P';S"), means that (P;S) can be transformed into (P’; S”) by a single computational step. For

simplicity, we assume that all variables and names are declared in the initial configuration ie., fv(P) =
fn(P) = . We define transitions on configurations next.

3.3 Reduction relation
+
The reduction relation ,——, over configurations is the least relation satisfying the following rules:

SEAC=C"
(M + C?[21.20].Q) | (N4CCL..Co]-P))iS) o (Q{Ch o Cnf 1, nn} | P)iS)

COMM:

COMM describes the communication between two normal processes C7?[z;...2,]).QQ and C'!I[Cy...CR].P
appearing in a summation, which are sending and receiving along the same channel. We decide from the store
whether they are using the same channel. In this sense we can say that the store controls the communication in

752

the 7T -calculus. Agent Q@ {Cy,...,Cp/zy, . .., r,} is obtained by replacing, in parallel, every free occurrence
ofwy,....xy by C1,. ... C, respectively. Notice that the remaining normal processes, A and IV, are discarded,
since at most one component of a summation is allowed to execute.

The rules ASK and TELL describe the interaction between constraint agents and the store.

TELL: (lo.P: S) T~ <P SN @)

S’:Ao 5}24\—'(75
(26.P;S)Z5(PiS) T (76.P8)E5(0;5)

ASK:

TELL is the way of adding information to the store. It says that !¢.P adds the constraint ¢ to store S and then
activates its continuation P. Such augmentation of the store is the major mechanism in CCP languages for an
agent to influence other agents in the system [Sar93]. For example, agent !(z = a). P tells agent z![Cy ... Cy].Q
that its communication channel is now fixed to a.

ASK 1s the way of obtaining information from the store. It says that P can be activated if the current store
S entails o, or discarded when S entails —o. For instance, agent ?(z = a V 2 = b).2![Cy...C,].P is able to
send O ... along a channel z, just in case r is either channel a or channel b.

An Ask agent that cannot be reduced in the current store S is said to be suspended by 5. An agent suspended
by S might be reduced in some augmentation of S. In the previous example ?(z = a V2 = b).2![C;...C,].P
1s suspended by the empty store, but if a Tell agent adds = a to this store, it can be reduced.

<P-S>L+><P’ s)
(@ | Pis)25(Q | Prisr)

PAR:

22/1(S), (PSP LNTHPLS) e o agfn(S), (PSP {a)) TH(PTS)
(v2)Pi5) T (Pr:s') (va) P:§) T3 Pri57)

DEC-V:

PAR says that reduction can occur underneath composition. DEC-V is the way of introducing new variables.
By S > {Cy,...,C,} we mean the store SAC; = C; A...AC, = C,, which is obviously equivalent to
S. Thus, we add variable r € fuv(S) to the store by S > {m} ensuring that v will not be used in following
declarations. In the case that x € fv(S) we can rename z with a new variable = € fv(S) U fv(P) by using
the first item of Definition 3.2 (i.e. (va)P = (v2)P{z/x} if z & fv(P)). DEC-N is defined in a similar way.

Rule EQUIV simple says that m+-equivalent configurations have the same reductions.

.
(P1:51)= 4 (P1351),(Pa:Sa) =+ (P3;55) ,(P1351) — (P2;.52)
(PL:S1) 5 (PysSy)

EQUIV:

7|'+ . . . 7l'+ . : / A
In what follows, = will denote the reflexive and transitive closure of =—. Finally, we will say that (P';.5")
is a derwative of (P; S) iff (P; S) <P’,S/>

Runtime failure. In the cc-model [Sar93]. the invariant property of the store is that it is satisfiable. This
can be done in the 7t-Calculus by performing a transition from (!¢.P;S) iff S A ¢ is satisfiable, oth‘enws.c
reducing to a distinguished configuration called fail, which denotes a runtime failure. This runtime failure is

753

...

propagated thereafter in the usual way. For simplicity we do not consider runtime failures, but we can add
these rules orthogonally, as in [Tur95], without affecting any of our results.

Potentiality of reduction. Whenever we augment the store, we may increase the potentiality of reduction,
that is, the number of possible transitions from a configuration. The following proposition states that any
agent P’ obtained from a configuration (P;S1) can be obtained from a configuration (P;8y), So being an
augmentation of S5.

Proposition 3.4 If Sy a 51 and (Py; 1) " (Py; 1) then (Pr; S2) I (Py; 5b) and Sh =a 51

Proof: Straightforward from rules TELL, COMM and ASK:

1. Transitions using ASK or COMM: Since 2 l_;—A Sy, for any constraint ¢ such that Si [=a ¢ we have Sy E=a 0.
Thus, any P> obtained by using ASK or COMM in (P13 S2) can be obtained by using the same rule for (P1; S2) .
Neither ASK nor COMM modify the store, therefore S5 Ea S,

Transitions using TELL: TELL does not consider the store as premise, but it modifies it. In this case P; =l¢.Q.

7\'+ ™ 7 i/
For the transition (1¢.Q;S1) — (Q;S1 A ¢) we have (1¢.Q; S2) ;\ (Q; S2 A g). Thus, S3 F=a Si.

D

e8]

Transitions using BQUIV: If (P1; S1) =+ (Ps; S3) and (Ps; Sa) W—+% (P4; SL), where (Ps; S4) =pv (P23 51), then
from 3.3 we have Sy f=a S5 and P; = Ps. The desired result is obtained by applying inductively items 1,2,3,4,5.
Transitions using DEC-V or DEC-N: In this case Py =,+ (vz)Q. Suppose first that z & fu(S2). If & & fu(Si)
we have S, > {z} F=a 51> {z}. If z € fv(S1), then using 3.2 (ie. (vz)Q = (v2)Q{z/x} if z & fu(Q), » was
replaced in Py by a new variable, z, such that z € fv(S1). For any z we have 52 > {z} E=a S1 > {z}. Similarly,
if © € fu(Sy) it is easy to see that for any y, S2 > {y} [Fa 51 and for any z, Sy > {2} Ea S1 > {z}. Thus,
the desired result is obtained by applying inductively items 1,2,3,4,5.

W

Transitions using PAR: PAR does not consider the store (directly) as a premise, therefore the desired result is
obtained by applying inductively items 1,2,3,4,5.

ot

U

In the following example we will describe the behavior of an agent to clarify our semantics.

Example 3.5 Agent Py sends along channel r the greater of two numbers © and y, which is then used by Q.
Let A be the set of all sentences valid in the rational numbers.

(vz)Py; Py = (vy) Ps; Ps = (vr)Py; Pa = (r?[2].Q | ?(z > y).r[x] | 7=(z > y)rlfy) | (e =y + 1)), ie.,
(o) (o) (o) (711.Q | 2z >y (o] | 7~(>)r!l] | Mz =y + 1),

Since the variable declarations are different, by DEC-V, the derivatives of (P1;T) are the derivatives of
(Py; T > {z}), whose derivatives are the derwatives of (Py; T > {z,y}). By DEC-N (remember that r de-
notes a name) the derivatives of (P2; T > {z, y}) are the derivatives of (Pa; T > {x,y,r}) of any. The Ask
agents in Py are suspended by T > {z,y,r}, and there is no other agent sending along channel r, so we can
only reduce (Py; T3> {z,y,r}) by applying TELL combined with PAR and EQUIV. Thus,

Py
P

ot
(Py; T {z,9.0)) Do ((07020.Q | 2a > y)rlle] | 7=(2 > 9)r!fu] [0 T > {2y rfAw =y + 1)
Now using ASK combined with PAR and EQUIV,

07120 | Pe] | 7= > w) i) [0); T {eyr} Ae =y 1)

We can eliminate the null process by using =+,
=+ (r?[2).Q | rlz] | 7=(z > y)rly]); T > {z,y,rf A=y + 1).

754

Using ASK combined with PAR,

+
I (7= Q | rl[2] |0): T > {z.y,r}Aa=y+1).

Using =,+ we can rewrite the processes so they can have the correct format for COMAM,
and eliminate the null process,

=+ ((r?[z].Q+0) | (P2l + 0): T > {z,yrfAe=y+1).

Finally. applying COMM and =+,
7r+ .
I (/23 10y T {eyriAe=y+1). = (Qz/z) T> {ryr}he=y+ 1)

Thus, (Py;T) LA (Q{z/z}; T>»{z,yrfnz=y+1).

Behavioral equivalence. In our technical report [VDR97] we defined a reduction equivalence relation,
called 7+-reduction equivalence. This relation equates configurations whose agents can communicate on the
same channels at each transition. For each channel C, this is expressed by means of an observation predicate
if, detecting the possibility of performing a communication with the external environment along C' in a store
S. Because of space restrictions we do not develop this here.

Names and Variables. In the m-calculus there is no difference between names and variables [Smo94b].
Names. conveniently used. provides a unique reference to concurrent objects and can also be used for data
encapsulation as in [Tur93]. In the 7+-calculus Names and Variables are considered different because of the
presence of constraints.

We first give an example to illustrate the difference. Let P, = (vz)(vy)(?~(z = v).Q) and
Py, = (va)(vh)(?=(a = b).Q) and let A be the set of sentences valid in the natural numbers. It is easy

2 !, A
to see that (Py; T) == (Q: T > {a,b}). However. since ?=(z = y).Q is suspended by T > {z,y}, there is no
reduction for (Py; T).

Finally, we take from [Smo94b] a proposition which states that names are different from any other value that

can be uniquely described by a formula:

Proposition 3.6 . Let o be a constraint such fv(¢) = {z}, and such that ¢ determines x, that 1s, A E 3dzo.
Then A = =dé{a/x} for every name a not occurring in o.

Proof: The proof is based on conditions (1) and (2) of the underlined constraint system. See [Smo94b]. (]

4 Using the n*-calculus

4.1 Recursive process definitions

We often wish to define process recursively. For instance suppose you want to define the addition of the
natural numbers z, y, returning the result along channel z. This can be done as follows (consider a constraint
system providing equations, inequations, natural numbers and the succesor function):

de
Dile.y.2) Y (25> 0.(var) (vwn) (Uor = suee(a)) | (suee(ys) =) | Difer, v, =) | 7y = 0.2z].
Recursively-defined processes have the form D(x1,....z,) = P, where P may contain occurrences of D
(perhaps with different arguments), fv(P) C {z1,...,2,} and fn(P) = 0. When no confusion arises we write

D (without arguments) instead of D(z1,.. ., z5) “p 755

However ”definition-making” is not a primitive, since it can be easily encoded using replication as in [Milner,
. . . def
91] and [Turner 95]. The idea is to replace each definition D(z1,...,2,) = P (i.e. D) by the process

xdi?zy .. x,). P (where d is a new channel) and every call D(C},...,Cp) by the process dl[Cy...Cr]. We
give an example to clarify this idea.

Example 4.1 Let @ = (vr)(ve)(Dy | Di(z,1,7) | Y= 5) | r?[z].Q1) be a context including
the process definition of the previous example, Dy, and a call to it. Intuitively, we ewpect that

(@Q;T) = (D1 | Qi{z1/z};.. . Az =5Az1 = succ(z) A...).

In the translation, D1 1s replaced by an agent P, where
P = xdy?[zyz].(7y > 0.((ve1) (vyr) (21 = suce(x)) | W(suce(yr) = y) | dilleiyi2])) | 7y = 0.2![x]).

Contert @ is replaced by agent @', where
Q' = (vdy)(vr)(vz)(P | dil[zlr] | (z = 5) | r?[z].Q1).

J
Finally, note that (Q"; T) 2= (P | Q1{z1/2z}; T > {d1,r,21,y1} Az =5 Axy = suce(x) Asucc(yr) = y)

4.2 Encoding Cells

Cells are useful for modelling mutable data structures. They are syntactical entities in the concurrent con-
straint calculi p and v [Smo94b]. A cell a : C' can be thought of as a location a whose current contents is C'.
In the 7wt-calculus, cells can be encoded as follows:

Definition 4.2 (Cell generator) The cell generator agent 15 defined as:
Dsy(z,y) def ?[z2a].(z1![y]. Doz, y) + x27[z].Do(z, 2)). A cell a : C 1is obtained by an invocation to
def

the cell generator; i.e. Ja:C] = Dy | Da(a,C).

A cell containing the value 5 in location a is [a : 5], a cell containing a value greater than 10 in location b
is (vz)([b: «] | '(x > 10)) . The contents of the cell can be read along a channel z; or updated by sending
a new value along a channel 5. The summation operator in the cell generator ensures that read and update
request cannot be executed concurrently. Thus, when an update request has been accepted, all subsequent
read requests will be answered with the updated contents of the cell.

For instance the agent [a : 5] | (vr)(vu)(a![ru].r?[z].Q) reads the contents of the cell [a : 5] along channel r,
which is then used by @. Note that:

([a 5] | (vr)(vu)(allru].r?[z.Q; T) =

T+

+

(Dy | (r'[5].Da(a,b) +u?[z].Da(a, 2)) | »?[z].Q; T > {r, u})
(Dy | Dafa,5) | Q{5/2}; T > {r,u})
ot (la:5]] Q{5/2}; T > {r,u})

The process [a : 5] | (vr)(vu)(al[ru].ul[4]) updates (decreases) the contents of the cell [a : 5] by using channel
u. Note that:

I

(Te : 51 | (vr){vu)(a!frul.ull4]; T) :% (D2 | (71[5].Do(a,5) + u?[2].Da(a, 2)) | uw!l4]; T {r, u})
= (D | Da(a,4) | 0; T > {r,u})
=+ ([a:4]; T > {r,u})

Finally, a common operation in cells, written ayC), is called Ezchange. It records the current contents of the
cell in a variable y and replaces it by C'. Obviously Exchange can be implemented in three steps: reading the
contents of the cell, recording this contents in y by using a Tell agent, and finally updating the contents with
(. The definition of exchange is:

Ds(z,y, z) et (vr) (vu)(z![ru].r?(z0) Wy = z0).z![ru].u![z])
756

Thus, exchange operation [ayC] is defined as:

[ayC] = Y Dy | Ds(a,y.C)

For instance the agent P = ([a : 5] | (va) [ar4]) transforms [a : 5] into [a : 4] and records its old contents in
a new variable z. Note that: '

(P:T) LAN (Dy | D3 | (r![5].Da(a,5) + u?[z].Da(a. 2)) | r?[z].(z = 2).a![ru].uw![4]; T > {x, 7, u})
LA (Dy | D3 | Do(a,5) | Yz =5).al[rul.ul[4): T > {x,r u})
LA (Ds | D3 | Da(a,3) | allru].u!l[4; T > {z.r,u} Az =5)
2 Dy | D3| Da(a,4); T> {e.ru} Az =5)
(

3| [a:4]; T > {z,r,u} Az =5)

5 Conclusions and future work

Ve defined the 7t-calculus, an orthogonal extension of the m-calculus to handle constraints. We did this by
adding variables and allowing agents to interact through constraints with a global store.

The mt-calculus is parametrized in a constraint system and thus independent of a particular domain for
constraints. We defined the operational semantic through an equivalence relation and a reduction relation on
configurations of an agent and a store. We showed how the reduction relation essentially mimics that of the
m-calculus but also that the 71 is able to express the more general notion of potentiality of reduction by the
presence of ASK and TELL rules interacting with the store. We described examples showing the transparent
interaction of constraints and communicating processes, including the possibility to define mutable data.

Finally, we propose three main directions for future work on this topic:

e Among the most successful work in parallel object-oriented programming languages is that on the POOL
family of languages [Ame89]. [Wal95] provides a semantics for a member of this family, via a phrase by
phrase translation into the w-calculus. The attributes are translated into cells in the m-calculus, which
are similar to those of the 7T-calculus, but without constraints. We believe that an extension of that
language integrating OO, Concurrent and Constraints paradigms can be constructed successfully by
using the 7T -calculus.

e The Turner’s abstract machine [Tur93] is an efficient implementation of the m-calculus used in the
programming language PICT [PT96]. Because of the orthogonality of our extension, it is feasible to
think in an extension of this abstract machine for the mF-calculus and also an extension of PICT to
consider first-order constraints.

e We will analyze the possibility of incorporating in our calculus the type system for the m-calculus
presented in [Tur95]. Moreover, we want to extend our calculus to consider objects (with classes) as a
basic entity in a similar way as in [Vas94].

References

[Ame89] P. America. Issues in the design of a parallel object-oriented language. Formal Aspects of Com-
puting, 1989.

[Mil80] Robin Milner. A calculus of communicating systems. Lecture Notes in Computer Science, LNC5
92. 1980.

[Mil91] Robin Milner. The polyadic 7-calculus: a tutorial. Technical Report ECS-LFCS-91-180, Laboratory
for Foundations of Computer Science, Department of Computer Science, University of Edinburgh,

757

E |

~J

[Mil92]

[MPW92]

[NM95]

[PRT93]

[PT96]

[Sar93]
[Smo94a]

[Smo94b)

[Tur95]

[Vas94]

[VDRO7]

[VP96)

[Wal95]

758

UK, October 1991. Also in Logic and Algebra of Specification, ed. F. L. Bauer, W. Brauer and H.
Schwichtenberg, Springer-Verlag, 1993.

Robin Milner. Functions as processes. Journal of Mathematical Structures in Computer Science,
2(2):119-141, 1992.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, Parts I and II.
Journal of Information and Computation, 100:1-77, September 1992.

Joachim Niehren and Martin Miiller. Constraints for Free in Concurrent Computation. In Kanchana
Kanchanasut and Jean-Jacques Lévy, editors, Asian Computing Science Conference, Lecture Notes
in Computer Science, vol. 1023, pages 171-186, Pathumthani, Thailand, December 11-13 1995.
Springer-Verlag.

Benjamin C. Pierce, Didier Rémy, and David N. Turner. A typed higher-order programming
language based on the pi-calculus. In Workshop on Type Theory and its Application to Computer
Systems, Kyoto University, July 1993.

Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the pi-calculus.
Technical report in preparation; available electronically, 1996.

Vijay A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge, MA, 1993.

Gert Smolka. A calculus for higher-order concurrent constraint programming with deep guards.
Research Report RR-94-03, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Stuhlsatzen-
hausweg 3, D-66123 Saarbriicken, Germany, February 1994.

Gert Smolka. A foundation for higher-order concurrent constraint programming. In Jean-Pierre
Jouannaud, editor, 1s¢ International Conference on Constraints in Computational Logics, Lecture
Notes in Computer Science, vol. 845, pages 50-72, Miinchen, Germany, 7-9 September 1994.
Springer-Verlag.

David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD thesis, Labor-
atory for Foundations of Computer Science, Department of Computer Science, University of Edin-

burgh, UK, 1995.

Vasco T. Vasconcelos. Typed concurrent objects. In M. Tokoro and R. Pareschi, editors, Proc. of
8th European Conference on Object-Oriented Programming (ECOOP’94), volume 821 of Lecture
Notes in Computer Science, pages 100-117. Springer-Verlag, 1994.

Frank VALENCIA, Juan Francisco DIAZ, and Camilo RUEDA. The T -calculus. Technical Report
No.2, AVISPA Team, 1997.

Bjorn Victor and Joachim Parrow. Constraint as processes. In Proc. of CONCUR’96, volume 1119
of Lecture Notes in Computer Science, pages 389-405. Springer-Verlag, 1996.

David Walker. Objects in the m-calculus. Journal of Information and Computation, 116(2):253~
271, 1995.

